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RTS Noise - Overview

 Observed in CCD and CMOS 

architectures

 Defined by discrete changes in 

signal level (blinking pixels)

 Recognized by similar lifetimes

 Two flavors of RTS

 Source Follower RTS (not 

discussed)

 Dark Current RTS (DC-RTS)
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Dark Current RTS (DC-RTS)

 Origin – metastable Shockley-Read-Hall 

generation/recombination centers

 Verified by integration time dependence on RTS 

amplitude

 Radiation damage effect

 Protons typically create DC-RTS centers in bulk

 X-rays/𝛾-rays typically create DC-RTS centers on Si-

SiO2 interface
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Signal Reconstruction

 What does 

perfect 

approximation 

look like?

 Zero white noise 

contribution

 Perfect RTS 

representation 

in shape and 
scale
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Signal Reconstruction

 Primary RTS characteristics

 State lifetime (time constant)

 RTS amplitude

 No well defined limits in 𝜏 and 𝐴 for 

RTS signals

 Small 𝜏’s and 𝐴’s make RTS transitions 

difficult to distinguish from normal 

Gaussian noise 
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Convolution Method

 Code provided by V. 

Goiffon et. al. (2009)

6



Convolution Method – cont.

 Applies a step shaped filter to a signal

 Detects RTS if 𝐴𝑚𝑎𝑥 > 𝜎𝑠𝑖𝑔

 Measures the mean value between spikes to 

estimate RTS signal levels

 Sorts RTS levels and approximates Gaussian 

noise-free RTS signal
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Wavelet Analysis – DWT

 The discrete wavelet transform (DWT) breaks 𝐟 of length N
into two ‘daughter’ sequences of length N/2

 Trend Sequence Members

 𝑎𝑚 =
𝑓2𝑚−1+𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2

 Details Sequence Members

 𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2

J. S. Walker, A Primer on Wavelets and their Scientific Applications. 

Boca Raton [Fla.]: Chapman & Hall/CRC, 2nd ed., 2008.
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DWT Denoising Method

 White noise is suppressed by thresholding the 

details sequence

 Similar to a high-pass/low-pass filter

 Based on magnitude rather than frequency

 The threshold is statistically derived 

 T is the universal threshold derived by Donoho

and Johnstone†

 Values below the threshold are set to zero

T = ෝσ 2 log 𝑛

† G. P. Nason, “Choice of the threshold parameter in wavelet function 

estimation,” Wavelets and statistics, vol. 103, pp. 261–280, 1995.
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DWT Denoising Method
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 Inverse DWT is performed on 

heavily thresholded signal

 Mean levels are sorted and a 

Gaussian noise free signal is 
constructed



Machine Learning Method

 RTS signals are detected and approximated using convolutional neural 

networks

 RTS detection is performed by a classification model

 Similar to image classification

 Takes a signal and returns a zero for RTS or one for non-RTS

 WN reduction is performed by an autoencoder

 Trained by creating gaps in signals, and ‘learning’ the best way to fill in those 

gaps  

 Takes a noisy signal and returns a clean signal
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Machine Learning Method

 To finish approximation with the ML 

method, a histogram is created 

from the autoencoder output

 The result is fitted as the sum of two 

Gaussian distributions

 The peaks are taken as the RTS 

signal levels, and the signal is 

reconstructed where each sample 
from the autoencoder snaps to its 

closest value from the histogram fit
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Testing Procedure

 Each method is tested for detection and 
approximation on a data block of 90,000 
simulated RTS signals 

 The signals begin clean, then have Gaussian 
noise added over the top

 One dimension of the block spans the signal 
to noise, defined as RTS amplitude/white 
noise floor, from ~zero to 6

 The other dimension spans the state lifetime 
of a signal from 1 to 300 samples

 The approximation of each signal is scored 
by its correlation coefficient against the 
noiseless version of input signal 

 Each method is tested for false positive 
detection on a block of 90,000 non-RTS 
signals
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Results – Convolution Method

 Reliably works with 𝑆𝑁𝑅 > ~2
and 𝜏 > ~50 frames

 66% RTS detection rate

 Mean 𝐶𝑥𝑦 of for detected 

signals: 0.9474

 Zero(!) non-RTS false positives
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Results – Wavelet Method

 Reliably works with 𝑆𝑁𝑅 > ~2
and 𝜏 > ~50 frames

 86.6% RTS detection rate

 Mean 𝐶𝑥𝑦 of for detected 

signals: 0.8644

 21.7% non-RTS false positive 

detection
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Results – Machine Learning Method

 Reliably works with 𝑆𝑁𝑅 > ~1
and 𝜏 > ~25 frames

 85.4% RTS detection rate

 Mean 𝐶𝑥𝑦 of for detected 

signals: 0.9564

 Zero(!) non-RTS false 

positives
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Results – Correlation Comparison
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 Direct comparison of the 
three methods

 All three perform well for 

signals 𝑆𝑁𝑅 > 2 and 𝜏 > 50
frames

 ML method performs reliably 

at half of those limits



Results - Discussion

 Convolution

 Threshold: High

 Correlation: High

 Wavelets

 Threshold: Low

 Correlation: Low

 Machine Learning

 Threshold: Low

 Correlation: High
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Correlation Range Convolution 

Counts

Wavelet Counts M.L.

Counts

0 < 𝐶𝑥𝑦 < 0.4 6 5,342 527

0.4 ≤ 𝐶𝑥𝑦 < 0.6 162 3,746 1,055

0.6 ≤ 𝐶𝑥𝑦 < 0.7 674 2,772 647

0.7 ≤ 𝐶𝑥𝑦 < 0.8 2,404 3,755 1,392

0.8 ≤ 𝐶𝑥𝑦 < 0.9 5,271 6,460 4,209

0.9 ≤ 𝐶𝑥𝑦 < 0.99 42,660 47,600 33,556

𝐶𝑥𝑦 ≥ 0.99 8,143 8,274 35,507
Ideal



Thanks for listening

 Questions?
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Haar Wavelet Analysis – DWT

 The DWT is similar to a microscope because it is repeatable

 The trend sequence is treated as the new ‘mother’ signal

 Each time a subsequent transform is performed the 

‘daughter’ sequences are of half size

The new ‘daughter’ sequence represents twice as many 

values from the original signal
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DWT Denoising Method

 The signal is run through 

the DWT denoising 

method as described 

 The white noise is greatly 

reduced, but a few 

transients remain
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DWT Denoising Method

 To remove transients, a simple 

running comparison is 

implemented to verify the stability 

of a transition

 When a change in signal occurs at 

frame 𝑘, its value is compared to 

the next 𝑙 frames where 𝑙 = 10

 If the value is unchanged the 

transition is considered stable and 

left alone

 If the value changes is considered 
a transient, and is changed to the 

value at frame 𝑘 − 1
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DWT Denoising Method

 Nearly all of the white noise is removed, 

but a few small changes remain

 A new details sequence is creating by 

subtracting each frame value by the 
previous frame value

 The new details sequence 𝑠 is of 𝑁 − 1
where 𝑁 is the size of the original signal

 Because the noise is already suppressed, 

the threshold need not be so 

discriminatory, as such

𝑇𝑠 = 𝑠𝑀𝐴𝑋 ∗ 𝑢0.75
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Machine Learning Method

 Signal classifier works similarly to 
image classifiers

 Developed in Python using a Keras
wrapper over Tensorflow

 The model is trained on a set of 
160,000 signals, half RTS and half 
non-RTS

 Convolutional layers extract 
prominent features and use them 
to differentiate RTS from non-RTS

 The convolutional layers use the 
‘relu’ activation function while the 
final layer uses a sigmoid to force a 
choice between zero and one
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𝐶𝑜𝑛𝑣 32,12 → 𝑃𝑜𝑜𝑙 3 → 𝐷𝑟𝑜𝑝 0.5 →

𝐶𝑜𝑛𝑣(64,12) → 𝑃𝑜𝑜𝑙(3) → 𝐷𝑟𝑜𝑝(0.5) →

𝐶𝑜𝑛𝑣(128,12) → 𝑃𝑜𝑜𝑙() → 𝐷𝑟𝑜𝑝(0.5) →

)𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(1



Machine Learning Method

 The autoencoder squeezes the noisy 

signal, extracting and prioritizing 

prominent features with convolutional 

and pooling layers

 It then expands the signal to original 

size and creates gaps with upsampling

 The model is trained to fill the gaps with 

a series of ‘wrong’ noisy signals and a 

corresponding set of ‘correct’ clean 

signals

 Each convolutional layer used the 

‘relu’ activation function while the last 

layer uses the linear function to avoid 

zero values in the reconstructed signal
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𝐶𝑜𝑛𝑣 64,12 → 𝑃𝑜𝑜𝑙 3 →

𝐶𝑜𝑛𝑣 32,12 → 𝑃𝑜𝑜𝑙 3 →

𝐶𝑜𝑛𝑣 32,12 → 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 3 →

𝐶𝑜𝑛𝑣 64,12 → 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒() →

𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 1500

Layertype(NumFilters,KernalSize)



Machine Learning Method

 The ML method requires special data 
preparation to work properly

 The training and input signals need to be 
rescaled between zero and one so that only the 
shape of the signals (RTS), not the magnitude, 
offers the defining signal characteristics

 Each value in the signal 𝑥 is subtracted by a 
number just below the minimum of the signal 

creating a new vector 𝑥𝑠

 Then, 𝑥𝑠 is divided by a number just above its 

maximum to create the scaled vector 𝑥𝑠𝑑

 Because the scaling must be reversable, a key is 
maintained of scaling constants for each signal
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𝑥𝑠 = 𝑥 − (0.99 ∗ min(𝑥))

)𝑥𝑠𝑑 = Τ𝑥𝑠 ( 1.01 ∗ max 𝑥𝑠
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