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RTS Noise - Overview
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O Observed in CCD and CMOS
architectures

O Defined by discrete changes in
signal level (blinking pixels)
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O Recognized by similar lifetimes
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O Two flavors of RTS

O Source Follower RTS (not
discussed)

O Dark Current RTS (DC-RTS)
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Micro-lens Color Filter Oxide

O Origin — metastable Shockley-Read-Hall
generation/recombination centers

O Verified by integration time dependence on RTS
amplitude

O Radiation damage effect
O Protons typically create DC-RTS centers in bulk

O X-rays/y-rays typically create DC-RTS centers on Si-
SiIO2 interface




Signal Reconstruction
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3100

perfect e
approximation . 00
|OO|< ”kea 2900 2900
2800 2800
ZerO WhiTe nOiSe % 2700 % 2700
contribution 5 o0 5 0
P erfec-l- RTS 2500 2500
representation 2400 200
Iﬂ S h O pe O n d 2300 2300
scale 20, 1000 1500 2200 1000 1500

Samples

Samples



Signal Reconstructior

O Primary RTS characteristics
O State lifetime (time constant)
O RTS amplitude

O No well defined limitsin T and A for
RTS signals

O Small 7's and A’'s make RTS transitions
difficult to distinguish from normal
Gaussian noise
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IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 4, AUGUST 2009

Multilevel RTS 1n Proton Irradiated CMOS

O Code provided by V. Image Sensors Manufactured in a Deep

Goiffon et. al. (2009)

Submicron Technology

V. Goiffon, Member, IEEE, G. R. Hopkinson, Member, IEEE, P. Magnan, Member, IEEE, F. Bernard,
G. Rolland, and O. Saint-Pé




O Applies a step shaped filter to a signal
O Detects RIS if 4,,,, > 0sig

O Measures the mean value between spikes to
estimate RIS signal levels

O Sorts RTS levels and approximates Gaussian
noise-free RTS signal




Wavelet Anc ﬂy& — DWT

O The discrete wavelet tfransform (DWT) breaks f of length N
into two ‘daughter’ sequences of length N/2
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J. S. Walker, A Primer on Wavelets and their Scientific Applications.
Boca Raton [Fla.]: Chapman & Hall/CRC, 2nd ed., 2008.




DWT Denoising Method

O White noise is suppressed by thresholding the

details sequence

Details Vector Coefficients
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O Similar to a high-pass/low-pass filter

o

O Based on magnitude rather than frequency

O The threshold is statistically derived

T =6y 2log(n)

O T is the universal threshold derived by Donoho
and Johnstonet

Details Vector Coefficients
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O Values below the threshold are set to zero

T G. P. Nason, “Choice of the threshold parameter in wavelet function

estimation,” Wavelets and statistics, vol. 103, pp. 261-280, 1995.
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O Inverse DWT is performed on
heavily thresholded signal
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O RTS signals are detected and approximated using convolutional neural
networks

O RTS detection is performed by a classification model
O Similar to image classification

O Takes a signal and returns a zero for RTS or one for non-RTS

O WN reduction is performed by an autoencoder

O Trained by creating gaps in signals, and ‘learning’ the best way to fill in those
gaps
O Takes a noisy signal and returns a clean signal
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Machine Learning Method
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Each method is tested for detection and
approximation on a data block of 20,000
simulated RTS signals

The signals begin clean, then have Gaussian
noise added over the top

One dimension of the block spans the signal
to noise, defined as RTS amplitude/white
noise floor, from ~zero to 6

The other dimension spans the state lifetime
of a signal from 1 to 300 samples

The approximation of each signal is scored
by its correlation coefficient against the
noiseless version of input signal

Each method is tested for false positive
detection on a block of 90,000 non-RTS
signals
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State Lifetime
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O Reliably works with SNR > ~2
and t > ~50 frames

O 66% RTS detection rate

O Mean (,,, of for detected
signals: 0.9474

O Zero(!) non-RTS false positives
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Signal to Noise (RTSamp/White Noise)
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Detection Correlation
O Reliably works with SNR > ~2
and t > ~50 frames
O 86.6% RTS detection rate

O Mean (,, of for detected
signals: 0.8644

O 21.7% non-RTS false positive
detection

State Lifetime (frames)
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O O

Reliably works with SNR > ~1
and t > ~25 frames

85.4% RTS detection rate

Mean C,, of for detected
signals: 0.9564

Zero(l) non-RTS false
positives
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Correlation Coefficient - Convolution

O Direct comparison of the
three methods

O All three perform well for
signals SNR > 2 and 7 > 50
frames

State Lifetime (frames)

O ML method performs reliably
at half of those limits

Signal to Noise (RTSamp/White Noise)




O Convolution
O Threshold: High
O Correlation: High
O Wavelets
O Threshold: Low

O Correlation: Low

‘O Machine Leorning\
O Threshold: Low

. O Correlation: High
Ideal 7

Correlation Range | Convolution | Wavelet Counts M.L.
Counts Counts

0 < Cyy <04 6 5,342 527
0.4 < (Cyy <0.6 162 3,746 1,055

0.6 < Cyy <0.7 674 2,772 647
0.7 < Cyy <03 2,404 3,755 1,392
0.8 < (yxy <09 5271 6,460 4,209
09 < Cyy <099 42,660 47,600 33,556
Cyxy = 0.99 8,143 8,274 35,507
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O Questions?
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O The DWT is similar o a microscope because it is repeatable

O The frend sequence is tfreated as the new ‘mother’ signal

O Each tfime a subsequent tfransform is performed the
‘daughter’ sequences are of half size

OThe new ‘daughter’ sequence represents twice as many
values from the original signal
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O The signal is run through T
the DWT denoising 5l '| H I il H

method as described
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To remove transients, a simple
running comparison is
Implemented to verity the stability
of a transition

When a change in signal occurs at
frame k, its value is compared 1o
the next [ frames where [ = 10

If the value is unchanged the
transition is considered stable and
left alone

If the value changes is considered
a fransient, and is changed to the
value af frame k — 1
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—Temp. Screen Applied
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DWT Denoising Method

Nearly all of the white noise is removed,
but a few small changes remain

Details Vector Coefficients

A new details sequence is creating by
subtracting each frame value by the
previous frame value

The new details sequence sisof N — 1
where N is the size of the original signal

Because the noise is already suppressed,
the threshold need not be so
discriminatory, as such
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Signal classifier works similarly to
image classifiers

Developed in Python using a Keras
wrapper over Tensorflow

The model is trained on a set of
160,000 signals, half RTS and half
Non-RTS

Convolutional layers extract
prominent features and use them
to differentiate RTS from non-RTS

The convolutional layers use the
‘relu’ activation function while the
final layer uses a sigmoid to force a
choice between zero and one

Conv(32,12) - Pool(3) —» Drop(0.5) —

Conv(64,12) = Pool(3) — Drop(0.5) -

Conv(128,12) — Pool() - Drop(0.5) -

Fully Connected (1)
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The autoencoder squeezes the noisy
signal, extracting and prioritizing
prominent features with convolutional
and pooling layers

It then expands the signal to original
size and creates gaps with upsampling

The model is trained to fill the gaps with
a series of ‘wrong’ noisy signals and a
corresponding set of ‘correct’ clean
signals

Each convolutional layer used the
‘relu’ activation function while the last
layer uses the linear function to avoid
zero values in the reconstructed signal

Layertype (NumeFilters,KernalSize)

Conv(64,12) - Pool(3) —»
Conv(32,12) » Pool(3) -
Conv(32,12) —» Upsample(3) -
Conv(64,12) - Upsample() —

Fully Connected (1500)
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The ML method requires special data
preparation to work properly

The fraining and input signals need to be
rescaled between zero and one so that only the
shape of the signals (RTS), not the magnitude,
offers the defining signal characteristics

Each value in the signal x is subtracted by a
number just below the minimum of the signal

creating a new vector xg

Then, x; IS divided by a number just above its
maximum to create the scaled vector x¢4

Because the scaling must be reversable, a key is
maintained of scaling constants for each signal

xs = x — (0.99 * min(x))

Xsq = Xg/(1.01 * max(x))

27



][ UV M“ Nuq W




ZE WW%WW’M wm[ww WM i ﬁwm WWF‘N

1500




o




\Wl | m\.lnw'wllﬂ Wi, """ ""'“ H‘ \" {111 | H‘

1|| Ii
TR 1 A m |

| / | l'l | ‘Il| [ : | I ‘. I
R AP R




