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Abstract– Bistable stochastic systems are 

characterized by random discrete jumps in 

what otherwise would be a constant signal, 

usually measured as current or voltage. Here, a 

method of bistable stochastic signal detection 

and white-noise-free reconstruction is 

presented. This method is built on machine 

learning techniques for classification and 

denoising of one-dimensional time-series. The 

model is trained on a simulated dataset in order 

to provide certainty in the fidelity of 

corresponding ‘clean’ and ‘noisy’ signals, and 

tested on a different set of simulated signals. In 

addition, experimental data collected from a 

digital image sensor are used to provide a 

qualitative description of the model’s efficacy.  
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1. Introduction 

1.1.  Bistable Stochastic Signals 

Bistable stochastic signals or stochastic switching 

signals are the result of nonlinear dynamic processes 

that occur across many domains of physical science. 

This category of phenomena is frequently modeled as a 

double potential well with an energy barrier of some 

height in the center. The system remains in one of the 

states for some time until an event, or random energetic 

fluctuations, prompts the system over the barrier to the 

other state. The system returns to the previous state in 

the same way.  

This phenomenon has been observed and studied 

extensively in biomolecular dynamics [1-5] where the 

kinetics of single molecule chemical reactions [6], and 

the mechanics of ion transport in biological membranes 

are modeled as two-state systems [7-9]. Single molecule 

reaction observations provide more precise 

measurements than those taken from a large collection. 

Ion transport is an important basic cellular process that 

provides insight into disease mechanisms. Enabling 

easier extraction of key parameters from these signals 

may enable researchers to develop more cost effective 

techniques to advance their fields. Many quantum 

mechanical systems are defined and analyzed as two-

state stochastic dynamic processes including studies 

into electron shelving [10], strongly coupled 

atom/resonator systems [11], and detection of spin 

resonance for a single electron [12]. These studies shed 

light into the dynamics between quantum mechanical 

systems and interacting fields, and allow 

nondestructive measurement of quantum spin states. 

Semiconductor devices are susceptible to metastable 

defects often caused by radiation exposure. Since these 

defects stochastically switch on and off, they produce 

bistable current signals known as random telegraph 

signals [13-17]. Analyzing the amplitudes and state 

lifetimes of these signals provides insight into the class 

and locations of these defects.  

Bistability is common, but has important 

implications. It has been shown that the superposition 

of bistable sources produces 1/𝑓 noise, a phenomenon 

that has been observed in everything from electronic 

devices to quasars [18]. The amplitudes and state 

lifetimes have different meanings for each system, but 

each provides information on a fundamental process in 

nature. In this paper we will describe a generic method 

for characterizing bistable signals and we will apply the 

technique to a large data set from a digital image sensor. 

 
1.2. Basic Mathematics of Noisy Bistable Stochastic 

Signals 

Bistability is defined by stochastic transitions 

between one of two states, defined here as state 0 and 

state 1, the low and high states respectively. 

Represented mathematically, the state 𝑠 at some given 

time 𝑡 is either 𝑠(𝑡) = 0 or 𝑠(𝑡) = 1. Here, we will 

assume that any bistable signal has two independent 

noise contributors, the state transitions and Gaussian 

or white noise from other sources e.g., measurement. 

Since these noises are assumed independent from one 



another in our model, their respective variances add 

together to determine the total noise of the signal such 

that: 

𝜎𝑆𝐼𝐺
2 = 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

2 + 𝜎𝐵𝑆𝑇
2  

 The magnitude of the signal at some time 𝑡 is 

written as: 

𝑥(𝑡) = 𝑥0 + 𝜖(𝑡) + 𝐴 ∗ 𝑠(𝑡) 

where 𝑥0 is the signal value of the bottom state, 𝜖(𝑡) is 

the dark current Gaussian noise contribution at time 𝑡, 

𝑠(𝑡) is the system state at time 𝑡, and 𝐴 is the state 

separation, or bistable amplitude. While the 

characteristic state lifetimes of a bistable signal may 

depend on a variety of factors, they are typically 

modeled as decaying exponentials, with the likelihood 

of the system flipping from one state to the other 

increasing with time. The model presented here is built 

on that assumption in order to account for the 

stochastic nature of these signals. 

1.3.  Machine Learning Classification 

 The goal in building a classification model is to take 

a set of data made of many categories and accurately 

separate it into its different types. This classification 

model was trained to differentiate noisy bistable signals 

from non-bistable signals. A signal is represented as a 

vector and passed through various layers of operators 

or functions to produce, in this case, a single output 

(zero for bistable signals or one for non-bistable 

signals). This is similar to the way that image 

classification is performed, and similar to machine 

learning classification methods previously used for one-

dimensional digital signals [19-23]. A typical 

convolutional classification model [24] will include: 

convolutional, pooling, dropout, and fully connected 

layers, here, each is addressed in turn.  

 

1.3.1.  Convolutional Layers 

 Convolutional layers apply filters to extract 

prominent features that are representative of 

distinctive characteristics, such as state transitions. As 

the signal is passed forward through the network, each 

neuron (or, filter or kernel) is convolved with the signal 

creating a feature map that is the same size as the input 

[25]. Finally, an activation function is applied to each 

filter. This function ensures that each convolution is, in 

the end, a non-linear operation. The activation function 

used here is the rectified linear unit (ReLU) function 

[26] which returns a zero for negative inputs and the 

input value itself for positive inputs [27], or with 𝑥 the 

input: 

𝑓(𝑥)𝑅𝑒𝐿𝑈 =  max{0, 𝑥}. 

Convolutional layers that are stacked after the initial 

layer will operate upon the feature maps produced from 

the previous layers. The shapes of the filters, or weights 

of the neurons, are continuously changed during the 

training process by backpropagation, to be discussed 

later. 

1.3.2. Pooling Layers 

 Pooling layers reduce the dimensionality of the 

vector by down-sampling the feature maps. Pooling 

layers typically appear directly following a 

convolutional layer. While there are a variety of pooling 

techniques, our classification scheme uses “max-

pooling.” Essentially, max-pooling is a form of 

compression that inspects a section of a feature map, 

say elements 7, 8, and 9, finds the largest value amongst 

the three, and tosses the other two values out. Pooling 

not only eases the computational stress of training a 

model by reducing the number of parameters, but also 

provides spatial invariance of important features [28]. 

1.3.3. Dropout Layers 

 Dropout layers turn off a percentage of neurons, or 

filters during training. This prevents filters from 

becoming dependent on the presence of neighboring 

filters to optimize the model. This interdependence 

leads to overfitting. An overfit model will perform very 

well on the data it is trained on, but will perform poorly 

on data in general [29]. 

1.3.4. Fully Connected Layers 

 The final layer in a classification model is a fully 

connected layer. Each neuron in this layer, as the name 

suggests, is connected to every output from the previous 

layer. This layer forms a vector where each element 

represents a confidence score corresponding to a 

distinct class. This model has a final layer of size one, 

where the one neuron represents the confidence of a 

signal containing bistability. 

1.4.   Classifier Training 

 When the model is first initialized for training the 

coefficients of each filter, or the shape of each filter, are 

randomized. Then, one by one, members of the training 

set are passed through the network, and assigned a 

confidence of bistable versus non-bistable. Because this 

is supervised training the confidence score is checked 

against the given label for the signal, 0 for bistable and 

1 for non-bistable signals. The error of the confidence 

score is calculated by using the binary cross-entropy 

loss function, defined below, and improved by updating 

the filter and activation weights by means of 

backpropagation [30]. 



1.4.1. Binary Cross Entropy 

 The loss function used for classification is binary 

cross entropy, 𝐸. Here, 𝑡 is the target label, 0 for 

bistable, 1 for non-bistable. 𝑦 is the probability of the 

signal being non-bistable according to the model. 

Notice that if the target and probability are close to one 

another the error is close to zero [31].  

𝐸 =  −(𝑡 log(𝑦) + (1 − 𝑡)log(1 − y)) 

1.5. Denoising Autoencoder 

 Once the signal is run through the classification 

model, and if it is determined to have bistability, the 

signal has its white noise component suppressed by 

means of a denoising autoencoder (DAE). The 

autoencoder shares some features of the classifier, e.g., 

convolutional layers, pooling layers, etc. Rather than 

attempting to identify the kind of signal (bistable vs. 

non-bistable) it takes the noisy signal as an input and 

attempts to return the denoised one. In this case, the 

autoencoder takes a bistable signal with Gaussian noise, 

and returns a signal with suppressed noise.  

 To train our DAE, a noise-free bistable signal, 𝑥, is 

simulated. Then, Gaussian noise is added over the top 

to produce the noisy signal �̃�. This signal is then 

encoded by running it through convolutional and 

pooling layers to extract pertinent features and 

compress it. The now encoded signal, or rather feature 

map, is then decoded by again running it through 

convolutional layers, but now using up-sampling rather 

than pooling. The up-sampling returns the signal to its 

original size by adding elements with value equal to 

zero. Adding these zeros forces the autoencoder to learn 

the important features of the non-zero values in order 

to ‘fill in the gaps’. Finally, the signal is passed through 

a fully connected layer that produces a denoised 

reconstruction of the input signal �̂� as seen in figure 1. 

Just like with the classifier, the result is measured 

against the ground truth, or in this case the original 

clean signal 𝑥 [32], by again using a loss function. For 

the autoencoder the loss function is a simple mean 

squares error comparison between each element of the 

clean signal 𝑥 and the denoised �̂� [33-36]. 

 

Figure 1: A stochastic bistable signal before (blue) and 

after (orange) passing through DAE. A significant 

increase in signal to noise is obvious. 

2.  Model Topology and Algorithm 

Methodology 

 

This bistable signal detection and reconstruction 

schema was developed in Python and MATLAB using 

the concepts outlined in the previous section. All 

machine learning modeling was performed in Python, 

while the data preparation and reconstruction 

finalization was performed in MATLAB. This section 

outlines the specific choices made with respect to model 

architecture, and signal processing to carry out the goal 

of accurate detection and reconstruction. 

2.1.     Classifier Summary  

 The classification modeling network, shown in 

figure 2, was developed in Python using Keras [37] as a 

wrapper over TensorFlow [38]. The layers are 

structured as such: 𝐶𝑜𝑛𝑣(32) → 𝑃𝑜𝑜𝑙(3) →

𝐷𝑟𝑜𝑝(0.5) → 𝐶𝑜𝑛𝑣(64) → 𝑃𝑜𝑜𝑙(3) → 𝐷𝑟𝑜𝑝(0.5) →

𝐶𝑜𝑛𝑣(128) → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙() → 𝐷𝑟𝑜𝑝(0.5) →

𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(1). The convolutional layers have 32, 

64, and 128 filters respectively with the size of each 

filter set to 12. Each uses the ReLU activation function. 

The first two pooling layers take the maximum value, 

while the last takes an average. The dropout rate is set 

to 50%. The final layer uses the sigmoid activation 

function. Training was carried out over five epochs. 

Figure 2 shows the number and size of the feature maps 

resulting from the convolution and pooling operations, 

as well as the final fully connected layer which contains 

the bistability confidence score. 

 



 

Figure 2: Topology of the bistability classification model. Each signal is passed through 32 convolutional filters to 

create 32 feature maps. The ReLU activation function is then applied. Those activated feature maps are then pooled 

down to size 500, passed through the next convolutional layer and activation function to creates a block of 64 feature 

maps of size 500. The process is repeated once more to create 128 feature maps of size 166 which undergo maxpooling 

where each feature map is reduced to a single value, its maximum. Those single value maps are then fully connected to 

the final layer, a single value, which represents the bistability confidence score.

 

2.2.     Autoencoder Summary 

 The denoising autoencoder model, shown in figure 

3, was likewise built in Python using Keras as a wrapper 

over TensorFlow. Its layers are structured as such:  

Conv(64)→Pool(3)→Conv(32)→Pool(3)→Conv(32)

→Upsample(3)→Conv(64)→Upsample(3)→ Fully 

Connected (1500). The convolutional layers have 64, 

32, and 64 filters respectively while the size of each 

filter is again set to 12. Each uses the rectified linear 

unit activation function. The final fully connected layer 

uses a linear activation function. Training was carried 

out over five epochs. The squeezing and expansion of 

the denoising autoencoder, as well as the denoising 

effect can be seen in figure 3. 

2.3. Training Considerations 

 One of the more problematic aspects of stochastic 

bistability is that there are no well-defined limits on  

 

amplitude or state lifetime. If either of these key 

characteristics is sufficiently small it is difficult to 

distinguish whether or not a signal has bistable state 

transitions, let alone attempt to reconstruct it without 

Gaussian noise. It then becomes necessary to create a 

training set with realistic bistable signals that feature a 

wide variety of amplitudes and state lifetimes. 

Simulated signals and noise augmentation have been 

used previously for training networks related to variety 

of applications [39-43]. The training set created here 

has amplitudes from 1 to 450  arbitrary units (AU), 

spaced evenly by intervals of 1.5 AU, and state lifetimes 

spaced evenly from 1 to 300 samples, as shown in figure 

4. Transitions between bistable states are determined 

by a decaying exponential probability so that they 

remain stochastic, but average out to the appropriate 

state lifetime. Lifetimes for the high and low states were 

set equal to each other for all bistable signals.  



 

Figure 3: Topology of the denoising autoencoder. Each signal is passed through the convolutional layers similar to the 

classifier. After the 3rd convolution the feature maps are upsampled rather than pooled to expand them back to their 

original size. By upsampling, the model is forced to learn important features of the data in question, which leads to a 

denoised version of the input signal.  

 

Figure 4: The structure of the training set  

 

Each signal then has Gaussian noise added, with a 

standard deviation of 75 AU as shown in figure 5. A new 

quantity is defined for an approximation of the signal to 

noise ratio which is simply  

 𝑆𝑁𝑅𝐵𝑆𝑇 = 𝐴/𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛  

where 𝐴 is the amplitude between states and 𝜎𝐺𝑢𝑎𝑠𝑠𝑖𝑎𝑛 is 

the Gaussian noise. The range of 𝑆𝑁𝑅𝐵𝑆𝑇  for the training 

dataset spans from  
1

75
  to 6. To train the classifier to 

separate bistable from non-bistable signals an 

additional collection of non-bistable signals, Gaussian 

noise only, were produced. . In total 180,000 signals 

were created, 90,000 with only Gaussian noise and 

90,000 with Gaussian noise and bistable transitions. 

 



 

Figure 5: A simulated bistable signal before and after 

adding Gaussian noise with 𝑆𝑁𝑅𝐵𝑆𝑇 = 5.33. 

 

 Finally, before training the machine learning 

models the signals must be scaled, so the shape of the 

signal, not the magnitude determines the weights of the 

filters. It was determined that each signal should lie 

between zero and one, so each signal 𝑥 is subtracted by 

a value just below the minimum to create 𝑥𝑠 

𝑥𝑠 = 𝑥 − 𝑠 ;  𝑠 = 0.99 ∗ min (𝑥) 

𝑥𝑠 is then divided by a value just above its maximum to 

create 𝑥𝑠𝑑 

𝑥𝑠𝑑 =
𝑥𝑠

𝑑
 ;  𝑑 = 1.01 ∗ max (𝑥𝑠) 

Since the model is trained on scaled signals, any real 

data processed by it must undergo the same scaling. In 

order to ensure the mean signal values remain 

unchanged this scaling must be reversible, so a key is 

maintained that records 𝑠 and 𝑑 for each signal 𝑥. 

 

2.4.  Gaussian fit level finding 

Recall the total noise of a bistable signal is defined 

as: 𝜎𝑆𝐼𝐺
2 = 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

2 + 𝜎𝐵𝑆𝑇
2  which shows the Gaussian 

noise and bistable transition noise are uncorrelated to 

one another. Therefore, a histogram of a bistable signal, 

before and after the autoencoder denoising, will be 

composed of the sum of Gaussian peaks, one for each 

state. The reconstruction of a bistable signal is 

completed by taking a histogram of the autoencoder 

result, and fitting [44] it as a sum of two Gaussians as 

shown in figure 6. The new clean signal, figure 7, is 

created by snapping each element of the autoencoder to 

whichever peak value from the fitted histogram (see 

figure 6) is closest to that element. From here the state 

separation amplitudes and state lifetimes are simply 

collected. 

 

Figure 6: The fitted histogram of the autoencoder 

results. The final reconstruction uses the values where 

peaks occur. 

 

Figure 7: The final reconstruction of a stochastic 

bistable signal. There are a total of 2 values for the 

entire signal, with zero Gaussian noise. 

 



3. Results and discussion 

 

3.1.    Simulated Dataset 

In order to measure the efficacy of the classification 

model, a validation test was carried out on two 

additional sets of simulated signals. This test inputs a 

sample signal to the model, and records the number of 

correct and incorrect inferences. Like the training sets, 

each is composed of 90,000 signals. The set of bistable 

signals has state lifetimes that span from 1 to 300 

samples, and amplitudes such that the 𝑆𝑁𝑅𝐵𝑆𝑇runs 

from 
1

75
  to 6. All signals are scaled as described above 

before running them through the algorithm.  

The algorithm detected 83.5% of the bistable 

signals, and recorded zero false positives from the non-

bistable test set. It works remarkably well on bistable 

signals that have a 𝑆𝑁𝑅𝐵𝑆𝑇 > 1.5 and lifetimes longer 

than about 20 samples as seen in figure 8.  

 

Figure 8: The bistable signal detection map. Black 

areas are where the detection model failed. 

 Each signal that passed detection was then scored 

on the quality of reconstruction by means of the sample 

correlation coefficient. This is a great advantage of 

testing on a simulated data set since each 

reconstruction can be directly compared to the original 

clean signal. The sample correlation coefficient is 

calculated as 

𝐶𝑥𝑦 =
Σ(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√Σ(𝑥𝑖 − 𝑥)2√Σ(𝑦𝑖 − 𝑦)2
 

where 𝐶𝑥𝑦 is the correlation coefficient or score, 𝑥𝑖 is the 

value of the 𝑖𝑡ℎ element in the reconstructed signal, �̅� is 

the mean of the reconstructed signal, 𝑦𝑖  is the value of 

the 𝑖𝑡ℎ element in the original clean signal, and �̅� is the 

mean of the original clean signal. The coefficient lies 

between −1 and 1 where −1 is perfectly anticorrelated, 

0 is uncorrelated and 1 is perfectly correlated. In 

practice negative scores are possible, but exceedingly 

rare. Nearly all bistable signal detections resulted in a 

highly accurate reconstruction as seen in figure 9 and 

punctuated by table 1. The mean correlation score for 

detected bistable signals is 0.978 [45].   

 

Figure 9: The sample correlation coefficient map. For 

the vast majority of signals that passed detection, 

reconstruction is near perfect.  

  

Correlation Range Counts 

0 < 𝐶𝑥𝑦 < 0.4 68 

0.4 ≤ 𝐶𝑥𝑦 < 0.6 257 

0.6 ≤ 𝐶𝑥𝑦 < 0.7  251 

0.7 ≤ 𝐶𝑥𝑦 < 0.8 730 

0.8 ≤ 𝐶𝑥𝑦 < 0.9  2,523 

0.9 ≤ 𝐶𝑥𝑦 < 0.99 21,613 

𝐶𝑥𝑦 ≥ 0.99 49,659 

 

Table 1: The correlation score counts highlight the 

quality of reconstruction for a great majority of pixels. 



 Figure 10: Reconstructions of four randomly selected RTS pixels. 

3.2.   RTS Image Sensor Data

 A commonly observed bistable phenomenon is 

Random Telegraph Signal (RTS) noise in silicon 

devices, particularly image sensors. RTS noise in 

sensors is typically the consequence of exposure to 

radiation. The bistability is produced by discrete 

changes in the generation rate of leakage current, 

known in image sensors as dark current [46]. RTS noise 

in image sensors has been previously analyzed in a 

number of ways. Usually a lengthy time series is created 

for pixels of interest by collecting many (a few 

thousand) frames at regular intervals. This series is 

then analyzed to identify RTS behavior and extract 

characteristics of interest. RTS is one of the major noise 

sources that remains difficult to mitigate in both CMOS 

and CCD image sensors. 

 To provide an example of the results this detection 

and reconstruction algorithm may yield frames were 

collected from a charge-coupled device (CCD) and 

stacked together. Then the temporal response from 

individual pixels was analyzed and reconstructed as if 

each were an independent device (see figure 10). The 

sensor used is a SITe SI-033AF frontside illuminated 1 

mega-pixel CCD (1024𝑥1024) [47]. Frames were taken 

in dark conditions with 10 second integration time at 

305 K.  

 As illustrated by the four random RTS pixels shown 

in figure 10, the collected CCD dark current data 

showed that the method described here is capable of 

creating quality noise free reconstructions of bistable 

stochastic signals. It was expected, perhaps naively, that 

the wide range of state lifetimes and amplitudes 

characteristic of RTS signals would cause some issues, 

but none have arisen yet. While this result is promising, 

additional validation is required by testing it on 

different sources of data.   

4. Conclusion 

 

A machine learning based algorithm is presented 

for the reconstruction and analysis of stochastic 

bistable signals. The algorithm uses a convolutional 

classifier for the identification of state transitions, and 

a convolutional denoising autoencoder to increase the 

bistable amplitude signal to noise level. A histogram of 

the decoded signal values is taken and fit to the sum of 

two Gaussians. Finally, the signal is reconstructed by 

snapping each value of the decoded signal to the nearest 

peak location. 

 Quantitatively, the algorithm was shown to be 

successful by running it on a set of simulated bistable 

and non-bistable signals. It detected over 83% of the 

bistable signals, and only consistently failed on signals 

with a 𝑆𝑁𝑅𝐵𝑆𝑇 < 1. Reconstruction for signals that 

passed detection is exceptional, reaching an almost 

perfect correlation coefficient of 0.99 or greater for 

nearly 66% of detected signals.  

 Qualitatively, the algorithm proved capable on a set 

of data collected by taking dark frames with a CCD 

image sensor. In the case of image sensors in particular, 

additional steps need to be taken to address issues 

stemming from cosmic rays and thermal fluctuations, 

but once mitigated near perfect reconstruction of an 

RTS signal is expected.  
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