
Detection and Reconstruction of Noisy Bistable

Stochastic Time Domain Signals Using Machine

Learning

Ben Hendrickson, Ralf Widenhorn, Paul R. DeStefano and Erik Bodegom

Department of Physics, Portland State University, Portland, OR 97201

Abstract– Bistable stochastic systems are

characterized by random discrete jumps in

what otherwise would be a constant signal,

usually measured as current or voltage. Here, a

method of bistable stochastic signal detection

and white-noise-free reconstruction is

presented. This method is built on machine

learning techniques for classification and

denoising of one-dimensional time-series. The

model is trained on a simulated dataset in order

to provide certainty in the fidelity of

corresponding ‘clean’ and ‘noisy’ signals, and

tested on a different set of simulated signals. In

addition, experimental data collected from a

digital image sensor are used to provide a

qualitative description of the model’s efficacy.

Keywords—machine learning, bistable

stochastic signals, random telegraph signal,

convolutional neural network, denoising

autoencoder, signal reconstruction

1. Introduction

1.1. Bistable Stochastic Signals

Bistable stochastic signals or stochastic switching

signals are the result of nonlinear dynamic processes

that occur across many domains of physical science.

This category of phenomena is frequently modeled as a

double potential well with an energy barrier of some

height in the center. The system remains in one of the

states for some time until an event, or random energetic

fluctuations, prompts the system over the barrier to the

other state. The system returns to the previous state in

the same way.

This phenomenon has been observed and studied

extensively in biomolecular dynamics [1-5] where the

kinetics of single molecule chemical reactions [6], and

the mechanics of ion transport in biological membranes

are modeled as two-state systems [7-9]. Single molecule

reaction observations provide more precise

measurements than those taken from a large collection.

Ion transport is an important basic cellular process that

provides insight into disease mechanisms. Enabling

easier extraction of key parameters from these signals

may enable researchers to develop more cost effective

techniques to advance their fields. Many quantum

mechanical systems are defined and analyzed as two-

state stochastic dynamic processes including studies

into electron shelving [10], strongly coupled

atom/resonator systems [11], and detection of spin

resonance for a single electron [12]. These studies shed

light into the dynamics between quantum mechanical

systems and interacting fields, and allow

nondestructive measurement of quantum spin states.

Semiconductor devices are susceptible to metastable

defects often caused by radiation exposure. Since these

defects stochastically switch on and off, they produce

bistable current signals known as random telegraph

signals [13-17]. Analyzing the amplitudes and state

lifetimes of these signals provides insight into the class

and locations of these defects.

Bistability is common, but has important

implications. It has been shown that the superposition

of bistable sources produces 1/𝑓 noise, a phenomenon

that has been observed in everything from electronic

devices to quasars [18]. The amplitudes and state

lifetimes have different meanings for each system, but

each provides information on a fundamental process in

nature. In this paper we will describe a generic method

for characterizing bistable signals and we will apply the

technique to a large data set from a digital image sensor.

1.2. Basic Mathematics of Noisy Bistable Stochastic

Signals

Bistability is defined by stochastic transitions

between one of two states, defined here as state 0 and

state 1, the low and high states respectively.

Represented mathematically, the state 𝑠 at some given

time 𝑡 is either 𝑠(𝑡) = 0 or 𝑠(𝑡) = 1. Here, we will

assume that any bistable signal has two independent

noise contributors, the state transitions and Gaussian

or white noise from other sources e.g., measurement.

Since these noises are assumed independent from one

another in our model, their respective variances add

together to determine the total noise of the signal such

that:

𝜎𝑆𝐼𝐺
2 = 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

2 + 𝜎𝐵𝑆𝑇
2

 The magnitude of the signal at some time 𝑡 is

written as:

𝑥(𝑡) = 𝑥0 + 𝜖(𝑡) + 𝐴 ∗ 𝑠(𝑡)

where 𝑥0 is the signal value of the bottom state, 𝜖(𝑡) is

the dark current Gaussian noise contribution at time 𝑡,

𝑠(𝑡) is the system state at time 𝑡, and 𝐴 is the state

separation, or bistable amplitude. While the

characteristic state lifetimes of a bistable signal may

depend on a variety of factors, they are typically

modeled as decaying exponentials, with the likelihood

of the system flipping from one state to the other

increasing with time. The model presented here is built

on that assumption in order to account for the

stochastic nature of these signals.

1.3. Machine Learning Classification

 The goal in building a classification model is to take

a set of data made of many categories and accurately

separate it into its different types. This classification

model was trained to differentiate noisy bistable signals

from non-bistable signals. A signal is represented as a

vector and passed through various layers of operators

or functions to produce, in this case, a single output

(zero for bistable signals or one for non-bistable

signals). This is similar to the way that image

classification is performed, and similar to machine

learning classification methods previously used for one-

dimensional digital signals [19-23]. A typical

convolutional classification model [24] will include:

convolutional, pooling, dropout, and fully connected

layers, here, each is addressed in turn.

1.3.1. Convolutional Layers

 Convolutional layers apply filters to extract

prominent features that are representative of

distinctive characteristics, such as state transitions. As

the signal is passed forward through the network, each

neuron (or, filter or kernel) is convolved with the signal

creating a feature map that is the same size as the input

[25]. Finally, an activation function is applied to each

filter. This function ensures that each convolution is, in

the end, a non-linear operation. The activation function

used here is the rectified linear unit (ReLU) function

[26] which returns a zero for negative inputs and the

input value itself for positive inputs [27], or with 𝑥 the

input:

𝑓(𝑥)𝑅𝑒𝐿𝑈 = max{0, 𝑥}.

Convolutional layers that are stacked after the initial

layer will operate upon the feature maps produced from

the previous layers. The shapes of the filters, or weights

of the neurons, are continuously changed during the

training process by backpropagation, to be discussed

later.

1.3.2. Pooling Layers

 Pooling layers reduce the dimensionality of the

vector by down-sampling the feature maps. Pooling

layers typically appear directly following a

convolutional layer. While there are a variety of pooling

techniques, our classification scheme uses “max-

pooling.” Essentially, max-pooling is a form of

compression that inspects a section of a feature map,

say elements 7, 8, and 9, finds the largest value amongst

the three, and tosses the other two values out. Pooling

not only eases the computational stress of training a

model by reducing the number of parameters, but also

provides spatial invariance of important features [28].

1.3.3. Dropout Layers

 Dropout layers turn off a percentage of neurons, or

filters during training. This prevents filters from

becoming dependent on the presence of neighboring

filters to optimize the model. This interdependence

leads to overfitting. An overfit model will perform very

well on the data it is trained on, but will perform poorly

on data in general [29].

1.3.4. Fully Connected Layers

 The final layer in a classification model is a fully

connected layer. Each neuron in this layer, as the name

suggests, is connected to every output from the previous

layer. This layer forms a vector where each element

represents a confidence score corresponding to a

distinct class. This model has a final layer of size one,

where the one neuron represents the confidence of a

signal containing bistability.

1.4. Classifier Training

 When the model is first initialized for training the

coefficients of each filter, or the shape of each filter, are

randomized. Then, one by one, members of the training

set are passed through the network, and assigned a

confidence of bistable versus non-bistable. Because this

is supervised training the confidence score is checked

against the given label for the signal, 0 for bistable and

1 for non-bistable signals. The error of the confidence

score is calculated by using the binary cross-entropy

loss function, defined below, and improved by updating

the filter and activation weights by means of

backpropagation [30].

1.4.1. Binary Cross Entropy

 The loss function used for classification is binary

cross entropy, 𝐸. Here, 𝑡 is the target label, 0 for

bistable, 1 for non-bistable. 𝑦 is the probability of the

signal being non-bistable according to the model.

Notice that if the target and probability are close to one

another the error is close to zero [31].

𝐸 = −(𝑡 log(𝑦) + (1 − 𝑡)log(1 − y))

1.5. Denoising Autoencoder

 Once the signal is run through the classification

model, and if it is determined to have bistability, the

signal has its white noise component suppressed by

means of a denoising autoencoder (DAE). The

autoencoder shares some features of the classifier, e.g.,

convolutional layers, pooling layers, etc. Rather than

attempting to identify the kind of signal (bistable vs.

non-bistable) it takes the noisy signal as an input and

attempts to return the denoised one. In this case, the

autoencoder takes a bistable signal with Gaussian noise,

and returns a signal with suppressed noise.

 To train our DAE, a noise-free bistable signal, 𝑥, is

simulated. Then, Gaussian noise is added over the top

to produce the noisy signal �̃�. This signal is then

encoded by running it through convolutional and

pooling layers to extract pertinent features and

compress it. The now encoded signal, or rather feature

map, is then decoded by again running it through

convolutional layers, but now using up-sampling rather

than pooling. The up-sampling returns the signal to its

original size by adding elements with value equal to

zero. Adding these zeros forces the autoencoder to learn

the important features of the non-zero values in order

to ‘fill in the gaps’. Finally, the signal is passed through

a fully connected layer that produces a denoised

reconstruction of the input signal �̂� as seen in figure 1.

Just like with the classifier, the result is measured

against the ground truth, or in this case the original

clean signal 𝑥 [32], by again using a loss function. For

the autoencoder the loss function is a simple mean

squares error comparison between each element of the

clean signal 𝑥 and the denoised �̂� [33-36].

Figure 1: A stochastic bistable signal before (blue) and

after (orange) passing through DAE. A significant

increase in signal to noise is obvious.

2. Model Topology and Algorithm

Methodology

This bistable signal detection and reconstruction

schema was developed in Python and MATLAB using

the concepts outlined in the previous section. All

machine learning modeling was performed in Python,

while the data preparation and reconstruction

finalization was performed in MATLAB. This section

outlines the specific choices made with respect to model

architecture, and signal processing to carry out the goal

of accurate detection and reconstruction.

2.1. Classifier Summary

 The classification modeling network, shown in

figure 2, was developed in Python using Keras [37] as a

wrapper over TensorFlow [38]. The layers are

structured as such: 𝐶𝑜𝑛𝑣(32) → 𝑃𝑜𝑜𝑙(3) →

𝐷𝑟𝑜𝑝(0.5) → 𝐶𝑜𝑛𝑣(64) → 𝑃𝑜𝑜𝑙(3) → 𝐷𝑟𝑜𝑝(0.5) →

𝐶𝑜𝑛𝑣(128) → 𝑀𝑎𝑥𝑃𝑜𝑜𝑙() → 𝐷𝑟𝑜𝑝(0.5) →

𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(1). The convolutional layers have 32,

64, and 128 filters respectively with the size of each

filter set to 12. Each uses the ReLU activation function.

The first two pooling layers take the maximum value,

while the last takes an average. The dropout rate is set

to 50%. The final layer uses the sigmoid activation

function. Training was carried out over five epochs.

Figure 2 shows the number and size of the feature maps

resulting from the convolution and pooling operations,

as well as the final fully connected layer which contains

the bistability confidence score.

Figure 2: Topology of the bistability classification model. Each signal is passed through 32 convolutional filters to

create 32 feature maps. The ReLU activation function is then applied. Those activated feature maps are then pooled

down to size 500, passed through the next convolutional layer and activation function to creates a block of 64 feature

maps of size 500. The process is repeated once more to create 128 feature maps of size 166 which undergo maxpooling

where each feature map is reduced to a single value, its maximum. Those single value maps are then fully connected to

the final layer, a single value, which represents the bistability confidence score.

2.2. Autoencoder Summary

 The denoising autoencoder model, shown in figure

3, was likewise built in Python using Keras as a wrapper

over TensorFlow. Its layers are structured as such:

Conv(64)→Pool(3)→Conv(32)→Pool(3)→Conv(32)

→Upsample(3)→Conv(64)→Upsample(3)→ Fully

Connected (1500). The convolutional layers have 64,

32, and 64 filters respectively while the size of each

filter is again set to 12. Each uses the rectified linear

unit activation function. The final fully connected layer

uses a linear activation function. Training was carried

out over five epochs. The squeezing and expansion of

the denoising autoencoder, as well as the denoising

effect can be seen in figure 3.

2.3. Training Considerations

 One of the more problematic aspects of stochastic

bistability is that there are no well-defined limits on

amplitude or state lifetime. If either of these key

characteristics is sufficiently small it is difficult to

distinguish whether or not a signal has bistable state

transitions, let alone attempt to reconstruct it without

Gaussian noise. It then becomes necessary to create a

training set with realistic bistable signals that feature a

wide variety of amplitudes and state lifetimes.

Simulated signals and noise augmentation have been

used previously for training networks related to variety

of applications [39-43]. The training set created here

has amplitudes from 1 to 450 arbitrary units (AU),

spaced evenly by intervals of 1.5 AU, and state lifetimes

spaced evenly from 1 to 300 samples, as shown in figure

4. Transitions between bistable states are determined

by a decaying exponential probability so that they

remain stochastic, but average out to the appropriate

state lifetime. Lifetimes for the high and low states were

set equal to each other for all bistable signals.

Figure 3: Topology of the denoising autoencoder. Each signal is passed through the convolutional layers similar to the

classifier. After the 3rd convolution the feature maps are upsampled rather than pooled to expand them back to their

original size. By upsampling, the model is forced to learn important features of the data in question, which leads to a

denoised version of the input signal.

Figure 4: The structure of the training set

Each signal then has Gaussian noise added, with a

standard deviation of 75 AU as shown in figure 5. A new

quantity is defined for an approximation of the signal to

noise ratio which is simply

 𝑆𝑁𝑅𝐵𝑆𝑇 = 𝐴/𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

where 𝐴 is the amplitude between states and 𝜎𝐺𝑢𝑎𝑠𝑠𝑖𝑎𝑛 is

the Gaussian noise. The range of 𝑆𝑁𝑅𝐵𝑆𝑇 for the training

dataset spans from
1

75
 to 6. To train the classifier to

separate bistable from non-bistable signals an

additional collection of non-bistable signals, Gaussian

noise only, were produced. . In total 180,000 signals

were created, 90,000 with only Gaussian noise and

90,000 with Gaussian noise and bistable transitions.

Figure 5: A simulated bistable signal before and after

adding Gaussian noise with 𝑆𝑁𝑅𝐵𝑆𝑇 = 5.33.

 Finally, before training the machine learning

models the signals must be scaled, so the shape of the

signal, not the magnitude determines the weights of the

filters. It was determined that each signal should lie

between zero and one, so each signal 𝑥 is subtracted by

a value just below the minimum to create 𝑥𝑠

𝑥𝑠 = 𝑥 − 𝑠 ; 𝑠 = 0.99 ∗ min (𝑥)

𝑥𝑠 is then divided by a value just above its maximum to

create 𝑥𝑠𝑑

𝑥𝑠𝑑 =
𝑥𝑠

𝑑
 ; 𝑑 = 1.01 ∗ max (𝑥𝑠)

Since the model is trained on scaled signals, any real

data processed by it must undergo the same scaling. In

order to ensure the mean signal values remain

unchanged this scaling must be reversible, so a key is

maintained that records 𝑠 and 𝑑 for each signal 𝑥.

2.4. Gaussian fit level finding

Recall the total noise of a bistable signal is defined

as: 𝜎𝑆𝐼𝐺
2 = 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

2 + 𝜎𝐵𝑆𝑇
2 which shows the Gaussian

noise and bistable transition noise are uncorrelated to

one another. Therefore, a histogram of a bistable signal,

before and after the autoencoder denoising, will be

composed of the sum of Gaussian peaks, one for each

state. The reconstruction of a bistable signal is

completed by taking a histogram of the autoencoder

result, and fitting [44] it as a sum of two Gaussians as

shown in figure 6. The new clean signal, figure 7, is

created by snapping each element of the autoencoder to

whichever peak value from the fitted histogram (see

figure 6) is closest to that element. From here the state

separation amplitudes and state lifetimes are simply

collected.

Figure 6: The fitted histogram of the autoencoder

results. The final reconstruction uses the values where

peaks occur.

Figure 7: The final reconstruction of a stochastic

bistable signal. There are a total of 2 values for the

entire signal, with zero Gaussian noise.

3. Results and discussion

3.1. Simulated Dataset

In order to measure the efficacy of the classification

model, a validation test was carried out on two

additional sets of simulated signals. This test inputs a

sample signal to the model, and records the number of

correct and incorrect inferences. Like the training sets,

each is composed of 90,000 signals. The set of bistable

signals has state lifetimes that span from 1 to 300

samples, and amplitudes such that the 𝑆𝑁𝑅𝐵𝑆𝑇runs

from
1

75
 to 6. All signals are scaled as described above

before running them through the algorithm.

The algorithm detected 83.5% of the bistable

signals, and recorded zero false positives from the non-

bistable test set. It works remarkably well on bistable

signals that have a 𝑆𝑁𝑅𝐵𝑆𝑇 > 1.5 and lifetimes longer

than about 20 samples as seen in figure 8.

Figure 8: The bistable signal detection map. Black

areas are where the detection model failed.

 Each signal that passed detection was then scored

on the quality of reconstruction by means of the sample

correlation coefficient. This is a great advantage of

testing on a simulated data set since each

reconstruction can be directly compared to the original

clean signal. The sample correlation coefficient is

calculated as

𝐶𝑥𝑦 =
Σ(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√Σ(𝑥𝑖 − 𝑥)2√Σ(𝑦𝑖 − 𝑦)2

where 𝐶𝑥𝑦 is the correlation coefficient or score, 𝑥𝑖 is the

value of the 𝑖𝑡ℎ element in the reconstructed signal, �̅� is

the mean of the reconstructed signal, 𝑦𝑖 is the value of

the 𝑖𝑡ℎ element in the original clean signal, and �̅� is the

mean of the original clean signal. The coefficient lies

between −1 and 1 where −1 is perfectly anticorrelated,

0 is uncorrelated and 1 is perfectly correlated. In

practice negative scores are possible, but exceedingly

rare. Nearly all bistable signal detections resulted in a

highly accurate reconstruction as seen in figure 9 and

punctuated by table 1. The mean correlation score for

detected bistable signals is 0.978 [45].

Figure 9: The sample correlation coefficient map. For

the vast majority of signals that passed detection,

reconstruction is near perfect.

Correlation Range Counts

0 < 𝐶𝑥𝑦 < 0.4 68

0.4 ≤ 𝐶𝑥𝑦 < 0.6 257

0.6 ≤ 𝐶𝑥𝑦 < 0.7 251

0.7 ≤ 𝐶𝑥𝑦 < 0.8 730

0.8 ≤ 𝐶𝑥𝑦 < 0.9 2,523

0.9 ≤ 𝐶𝑥𝑦 < 0.99 21,613

𝐶𝑥𝑦 ≥ 0.99 49,659

Table 1: The correlation score counts highlight the

quality of reconstruction for a great majority of pixels.

 Figure 10: Reconstructions of four randomly selected RTS pixels.

3.2. RTS Image Sensor Data

 A commonly observed bistable phenomenon is

Random Telegraph Signal (RTS) noise in silicon

devices, particularly image sensors. RTS noise in

sensors is typically the consequence of exposure to

radiation. The bistability is produced by discrete

changes in the generation rate of leakage current,

known in image sensors as dark current [46]. RTS noise

in image sensors has been previously analyzed in a

number of ways. Usually a lengthy time series is created

for pixels of interest by collecting many (a few

thousand) frames at regular intervals. This series is

then analyzed to identify RTS behavior and extract

characteristics of interest. RTS is one of the major noise

sources that remains difficult to mitigate in both CMOS

and CCD image sensors.

 To provide an example of the results this detection

and reconstruction algorithm may yield frames were

collected from a charge-coupled device (CCD) and

stacked together. Then the temporal response from

individual pixels was analyzed and reconstructed as if

each were an independent device (see figure 10). The

sensor used is a SITe SI-033AF frontside illuminated 1

mega-pixel CCD (1024𝑥1024) [47]. Frames were taken

in dark conditions with 10 second integration time at

305 K.

 As illustrated by the four random RTS pixels shown

in figure 10, the collected CCD dark current data

showed that the method described here is capable of

creating quality noise free reconstructions of bistable

stochastic signals. It was expected, perhaps naively, that

the wide range of state lifetimes and amplitudes

characteristic of RTS signals would cause some issues,

but none have arisen yet. While this result is promising,

additional validation is required by testing it on

different sources of data.

4. Conclusion

A machine learning based algorithm is presented

for the reconstruction and analysis of stochastic

bistable signals. The algorithm uses a convolutional

classifier for the identification of state transitions, and

a convolutional denoising autoencoder to increase the

bistable amplitude signal to noise level. A histogram of

the decoded signal values is taken and fit to the sum of

two Gaussians. Finally, the signal is reconstructed by

snapping each value of the decoded signal to the nearest

peak location.

 Quantitatively, the algorithm was shown to be

successful by running it on a set of simulated bistable

and non-bistable signals. It detected over 83% of the

bistable signals, and only consistently failed on signals

with a 𝑆𝑁𝑅𝐵𝑆𝑇 < 1. Reconstruction for signals that

passed detection is exceptional, reaching an almost

perfect correlation coefficient of 0.99 or greater for

nearly 66% of detected signals.

 Qualitatively, the algorithm proved capable on a set

of data collected by taking dark frames with a CCD

image sensor. In the case of image sensors in particular,

additional steps need to be taken to address issues

stemming from cosmic rays and thermal fluctuations,

but once mitigated near perfect reconstruction of an

RTS signal is expected.

References

[1] E. Rhoades, E. Gussakovsky, G. Haran, Watching proteins fold one

molecule at a time. Proc. Natl. Acad. Sci. USA. 100 (2003) 3197-3202.

[2] H.S. Chung, K. McHale, J. M. Louis, W. A. Eaton, Single-Molecule

Fluorescence Experiments Determine Protein Folding Transition

Path Times, Science. (2012) 981-984.

[3] L. Edman, Z. Földes-Papp, S. Wennmalm, R. Rigler, The

fluctuating enzyme: a single molecule approach, Chem. Phys., Volume

247, Issue 1 (1999) 11-22.

[4] H.P. Lu, L. Xun, X.S. Xie, Single-Molecule Enzymatic Dynamics,

Science. (1998) 1877-1882.

[5] X. Zhuang, H. Kim, M.J.B. Pereira, H.P. Babcock, N.G. Walter, S.

Chu, Correlating Structural Dynamics and Function in Single

Ribozyme Molecules, Science, (2002) 1473-1476.

[6] K. Velonia, O. Flomenbom, D. Loos, S. Masuo, M. Cotlet, Y.

Engelborghs, J. Hofkens, A.E. Rowan, J. Klafter, R.J.M. Nolte, F.C. de

Schryver, Single enzyme kinetics of CALB catalyzed hydrolysis,
Angew. Chem. Int. Ed. Engl., 44 (2005) 560-564.

[7] R.C. Klipp, N. Li, Q. Wang, T.A. Word, M. Sibrian-Vazquez, R.M.
Strongin, X.H.T. Wehrens, J.J. Abramson, EL20, a potent

antiarrhythmic compound, selectively inhibits calmodulin-deficient

ryanodine receptor type 2, Heart Rhythm, 15 (2018) 578-586.

[8] V. Krishnamurthy et al., Gramicidin Ion Channel-Based

Biosensors: Construction, Stochastic Dynamical Models, and

Statistical Detection Algorithms, IEEE Sensors Journal, 7 (2007)

1281-1288.

 [9] S. Oiki, H. Shimizu, M. Iwamoto, and T. Konno, Single-Molecular

Gating Dynamics for the KcsA Potassium Channel, Single‐Molecule
Biophysics, (2011) 147-193.

 [10] D. R. Crick, S. Donnellan, D. M. Segal, and R. C. Thompson,
Magnetically induced electron shelving in a trapped Ca+ ion, Phys.

Rev. A, 81-052503 (2010) 1-4.

[11] S. Reick, K. Mølmer, W. Alt, M. Eckstein, T. Kampschulte, L. Kong

R. Reimann, A. Thobe, A. Widera and D. Meschede, Analyzing

quantum jumps of one and two atoms strongly coupled to an optical

cavity, J. Opt. Soc. America B, 27 (2010) A152-A163.

[12] J. Jin, J. Guo, J. Luo, X. Li, and Y. Yan, Quantum trajectory

analysis for electrical detection of single-electron spin resonance,

Phys. Rev. B, 73 (2005) 125312.1-5.

[13] P.L. Leonard and S.V. Jaskolski, An investigation into the origin

and nature of "Popcorn noise”, Proceedings of the IEEE, 57 (1969)
1786-1788.

[14] J. Bogaerts, B. Dierickx and R. Mertens, Random telegraph

signals in a radiation-hardened CMOS active pixel sensor, IEEE
Trans. on Nucl. Sci., 49 (2002) 249-257.

[15] W.H. Chard and P.K. Chaudhari, Characteristics of burst noise,

Proc. IEEE, 53 (1965) 652.

[16] E. Simoen, B. Dierickx, C. L. Claeys, and G. J. Declerck,

Explaining the amplitude of RTS noise in submicrometer MOSFETs,
IEEE Trans. Electron Devices, 39 (1992) 422.

[17] V. Goiffon, P. Magnan, P. Martin-Gonthier, C. Virmontois, and

M. Gaillardin, New source of random telegraph signal in CMOS image

sensors, International Image Sensor Workshop, Hokkaido, Japan,

(2011)

[18] W.H. Press, Flicker noises in astronomy and elsewhere,

Comments on Modern Physics, Part C - Comments on Astrophysics,

7 (1978) 103-119.

[19] Q. Wang, P. Du, J. Yang, G. Wang, J. Lei, C. Hou, Transferred

deep learning based waveform recognition for cognitive passive radar,

Signal Process., 155 (2019) 259-267.

[20] T. Ölmez, Z. Dokur, Classification of heart sounds using an

artificial neural network, Pattern Recognition Letters, 24 (2003) 617-
629.

[21] K. Basu, V. Debusschere, A. Douzal-Chouakria, S. Bacha, Time

series distance-based methods for non-intrusive load monitoring in
residential buildings, Energy and Buildings, 96 (2015) 109-117.

[22] Y. Chen, G. Zhang, M. Bai, S. Zu, Z. Guan, and

M. Zhang, Automatic Waveform Classification and Arrival Picking
Based on Convolutional Neural Network, Earth and Space

Science, (2019) 1-77.

[23] Z. Xiong, M.K. Stiles, J. Zhao, Robust ECG Signal Classification

for Detection of Atrial Fibrillation Using a Novel Neural Network,

Computing in Cardiology, 44, 2017.

[24] T. Guo, J. Dong, H. Li and Y. Gao, Simple convolutional neural

network on image classification, 2017 IEEE 2nd International

Conference on Big Data Analysis (ICBDA), Beijing, (2017) 721-724.

[25] J. Li, Y. Si, L. Lang, L. Liu, T. Xu, A Spatial Pyramid Pooling-

Based Deep Convolutional Neural Network for the Classification of

Electrocardiogram Beats, Appl. Sciences, 8 (2018) 1590.

[26] Z. Hu, Y. Li and Z. Yang, Improving Convolutional Neural

Network Using Pseudo Derivative ReLU, 2018 5th International

Conference on Systems and Informatics (ICSAI), Nanjing, (2018)
283-287.

[27] M.D. Zeiler and R. Fergus, Visualizing and understanding

convolutional networks, ECCV, volume 8689 of Lecture Notes in
Computer Science, Springer (2014) 818–833.

[28] D. Ciresan, U. Meier, J. Masci, L. Gambardella, and J.
Schmidhuber, Flexible, High Performance Convolutional Neural

Networks for Image Classification, International Joint Conference on

Artificial Intelligence (2011) 1237-1242.

[29] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, Improving neural networks by preventing co-

adaptation of feature detectors, ArXiv (2012)

[30] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based

learning applied to document recognition, Proceedings of the IEEE,

86 (1998) 2278-2324.

[31] P. Sadowski, Notes on backpropagation, (2016). [Online].

Available: https://www.ics.uci.edu/

[32] C. Lu, Z. Wang, W. Qin, J. Ma, Fault diagnosis of rotary

machinery components using a stacked denoising autoencoder-based

health state identification, Signal Process., 130 (2017) 377-388.

[33] L. Gondara, Medical Image Denoising Using Convolutional

Denoising Autoencoders, 2016 IEEE 16th International Conference

on Data Mining Workshops (ICDMW), Barcelona, (2016) 241-246.

[34] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.

Manzagol. Stacked denoising autoencoders: Learning useful

https://www.ics.uci.edu/

representations in a deep network with a local denoising criterion. In

Proceedings of the 27th International Conference on Machine
Learning, (2010) 3371–3408.

[35] G. Hinton et al., Deep Neural Networks for Acoustic Modeling in

Speech Recognition: The Shared Views of Four Research Groups,
IEEE Signal Process. Mag., 29 (2012) 82-97.

[36] X. Ye, L. Wang, H. Xing and L. Huang, Denoising hybrid noises

in image with stacked autoencoder, 2015 IEEE International
Conference on Information and Automation, Lijiang, (2015) 2720-

2724.

[37] Chollet, François and others, Keras, (2015) [Online]. Available:
www.keras.io

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L.
Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S.
Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous
systems, (2015) [Online]. Available from www.tensorflow.org

[39] M. Carrillo et al, Time series analysis of gravitational wave
signals using neural networks, J. Phys.: Conf. Ser. 654 012001, (2015).

[40] M. Takadoya, M. Notake, M. Kitahara, J.D. Achenbach, Q.C. Guo
and M.L. Peterson, Crack-Depth Determination By A Neural Network
With A Synthetic Training Data Set, Review of Progress in
Quantitative Nondestructive Evaluation, 12, (1993) 803-810.

[41] N. J. Rodriguez-Fernandez, P. Richaume, Y. H. Kerr, F. Aires, C.
Prigent and J. Wigneron, Global retrieval of soil moisture using
neural networks trained with synthetic radiometric data, 2017 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
Fort Worth, TX, (2017) 1581-1584.

[42] T. A. Le, A. G. Baydin, R. Zinkov and F. Wood, Using synthetic
data to train neural networks is model-based reasoning, 2017
International Joint Conference on Neural Networks (IJCNN),
Anchorage, AK, (2017) 3514-3521.

[43] A. Witmer and B. Bhanu, HESCNET: A Synthetically Pre-Trained
Convolutional Neural Network for Human Embryonic Stem Cell
Colony Classification, 2018 25th IEEE International Conference on
Image Processing (ICIP), Athens, (2018) 2441-2445.

[44] T.C. O’Haver, Pragmatic Introduction to Signal Processing 2019:
Applications in scientific measurement. Kindle Direct Publishing,
(2019) p. 340.

[45] N. Bershad and A. Rockmore, On estimating signal-to-noise ratio
using the sample correlation coefficient (Corresp.), IEEE
Transactions on Information Theory, 20 (1974) 112-113.

[46] K. Ackerson et al., Characterization of "blinking pixels" in CMOS
Image Sensors, 2008 IEEE/SEMI Advanced Semiconductor

Manufacturing Conference, Cambridge, MA, (2008) 255-258.

[47] SITe SI03xA 24 µm Charge-Coupled Device Family, SITe,
Tigard, OR, (2003) [Online]. Available:
http://www.not.iac.es/instruments/detectors/CCD1/S103xA_family
.pdf

file:///C:/Users/Ben%20WORK%20ONLY/Downloads/www.keras.io
file:///C:/Users/Ben%20WORK%20ONLY/Downloads/www.tensorflow.org
http://www.not.iac.es/instruments/detectors/CCD1/S103xA_family.pdf
http://www.not.iac.es/instruments/detectors/CCD1/S103xA_family.pdf

