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RTS Noise - Overview

 Observed in CCD and CMOS 

architectures

 Defined by discrete 

changes in signal level 

(blinking pixels)

 Stochastic process with 

Poisson distributed state 

lifetimes

 Characterized by similar 

lifetimes
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The Haar Wavelet & Discrete Wavelet 

Transform

 An orthonormal basis set developed by 

Alfred Haar in 1909

 Left largely in obscurity until DeBauchies

pioneering work constructing and using 

wavelets for digital signal processing and 

analysis

 DWT Useful for edge detection 

applications

 Acts like a microscope, signals analyzed at 

a variety of scales
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Experimental Parameters for radiation 

effects in Si image sensors
 COTS Omnivision OV5647

 Raw frames taken using a Raspberry Pi 3

 Five sensors irradiated with a continuum 

of high energy 𝛾 and x-rays (peak -

2𝑀𝑒𝑉)

 1500 frames taken at 0.05 frames/s

 ~ 8.3 hours total measurement time

 Frames taken in dark at 23°C

Absorbed Ionizing 

Dose (rad – Si)

500

2,500

5,000

10,000

25,000
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Haar Wavelet Analysis – DWT

 Consider a digital signal 𝐟 = (𝑓1, 𝑓2, 𝑓3, … 𝑓𝑁)

 The discrete wavelet transform (DWT) 

breaks 𝐟 into two ‘daughter’ series of 

length N/2

Trend Series Members

𝑎𝑚 =
𝑓2𝑚−1+𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2

Details Series Members

𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2

J. S. Walker, A Primer on Wavelets and their Scientific Applications. 

Boca Raton [Fla.]: Chapman & Hall/CRC, 2nd ed., 2008. 5



Haar Wavelet Analysis – DWT (cont.)

 The DWT is similar to a microscope 

because it is repeatable

 The trend series is treated as the new 

‘mother’ signal

 Each time a subsequent transform is 

performed the ‘daughter’ series are of half 

size

 The new ‘daughter’ series represent 

twice as many values from the original 

signal
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Wavelet Operators – Trends Series

𝐕1
1 =

1

2
1,1,0,0,0, … ; 𝐕2

1 =
1

2
0,0,1,1,0, …

𝑎1 =
𝑓1+𝑓2

√2
= 𝐟 ⋅ 𝐕1

1;  𝑎2 =
𝑓3+𝑓4

√2
= 𝐟 ⋅ 𝐕2

1

𝑎𝑚 =
𝑓2𝑚−1 + 𝑓2𝑚

√2
= 𝐟 ⋅ 𝐕𝑚

1
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Wavelet Operators – Details Series

𝐖1
1 =

1

2
1,−1,0,0,0, … , 𝐖2

1 =
1

2
0,0,1, −1,0,…

𝑑1 =
𝑓1−𝑓2

√2
= 𝐟 ⋅ 𝐖1

1
; 𝑑2 =

𝑓3−𝑓4

√2
= 𝐟 ⋅ 𝐖2

1

𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

√2
= 𝐟 ⋅ 𝐖𝑚

1
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The Inverse Transform

𝐟 = (
a1 + 𝑑1

√2
,
a1 − 𝑑1

√2
, …

a𝑁
2
+ 𝑑𝑁

2

√2
,

a𝑁
2
− 𝑑𝑁

2

√2
)
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DWT – Denoising

 White noise is suppressed by thresholding the details 

series

 Similar to a high-pass/low-pass filter

 Based on magnitude rather than frequency

 The threshold is statistically derived 

 T is the universal threshold derived by Donoho and 

Johnstone†

 Values below the threshold are set to zero

T = ෝσ 2 log 𝑛

† G. P. Nason, “Choice of the threshold parameter in wavelet function 

estimation,” Wavelets and statistics, vol. 103, pp. 261–280, 1995.
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Approximation Signal Construction

 The goal is to remove all noise from the 
signal except for the RTS transitions

 The DWT is performed seven times and 
thresholded at every iteration

 The chosen threshold is designed be 
highly discriminatory to prevent false 
positive detections

 A temporal screen is implemented to 
remove contributions from single events 
like cosmic rays
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Approximation Signal Construction

Stage 1: Window Comparison

 Cut signal into six windows

 Compare the mean of a 

window to the previous two

 If any difference is greater 

than the standard deviation of 

the noise 𝜎𝑟 the signal 

progresses as an RTS 

candidate

 Crude, but highly effective 

and discriminatory
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Approximation Signal Construction

Stage 2: DWT Denoising

 The signal is run through the 

DWT denoising method as 

described previously

 The white noise is greatly 

reduced, but a few 

transients remain
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Approximation Signal Construction

Stage 3: Temporal Screen

 To remove transients, a simple 

running comparison is implemented 

to verify the stability of a transition

 When a change in magnitude happens 

at frame 𝑘, its value is compared to 

the next 𝑙 frames where 𝑙 = 10

 If the value is unchanged the 

transition is considered stable and 

left alone

 If the value changes is considered a 

transient, and is changed to the value 

at frame 𝑘 − 1
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Approximation Signal Construction

Stage 4: A Second Thresholding

 Nearly all of the white noise is removed, 

but a few small changes remain

 A new details series is creating by 

subtracting each frame value by the 

previous frame value

 The new details series 𝑠 is of 𝑁 − 1 where 𝑁
is the size of the original signal

 Because the noise is already suppressed, the 

threshold need not be so discriminatory, as 

such

𝑇𝑠 = 𝑠𝑀𝐴𝑋 ∗ 𝑢0.75
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Approximation Signal Construction

Stage 5: Final Reconstruction

 The final approximation is created by 

applying the mean of the original signal 

to the segments between the remaining 

non-zero values of the latest details 

series

 With the new approximation complete 

the RTS amplitudes and time constants 

can be gathered easily for analysis
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Results – Maximum Amplitudes

 Similar shape of curves indicates that 

higher doses increase the likelihood of 

creating an RTS center, but the amplitude 

probability for a center is set

 No correlation seen between RTS amplitude 

and time constants
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Results – Second-Order Defect 

Generation

 The number of RTS centers 

increases ~quadratically with 

absorbed dose

 This indicates that the particular 

defect responsible for this RTS 

noise is of second-order
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Results – State Lifetimes

 Lifetimes are calculated by averaging the 

time spent in the high or low states

 Both high and low states display an 

exponential distribution

 The low state time constant distribution is 

slightly flatter than the high state, 

indicating that the low state is the more 

stable of the two
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