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    Abstract--This paper explores the phenomenon of dark 

current random telegraph signal (DC-RTS) noise in 

commercial off-the-shelf CMOS image sensors.  Five 

sensors were irradiated with high energy photons to a 

variety of doses and analyzed with a wavelets-based signal 

reconstruction algorithm. The algorithm is explained in 

detail, and the radiation effects on individual pixels are 

discussed. Finally, the generation rate of RTS pixels as a 

function of dose is explored, providing information on the 

underlying defect structure responsible for this noise 

source. 
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I - INTRODUCTION 

 

ANDOM Telegraph Signal (RTS) noise is characterized     

by discrete transitions in the signal current of a MOSFET  

device (see Figure 1). Studied since the 1960s [1], the 

steady shrinking of pixel pitch has driven RTS noise to become 

a major noise source in modern CMOS image sensors. These 

transitions occur due to alterations in the conductivity 𝜎, which 

is expressed as 𝜎 = 𝜇𝑛𝑞 where 𝜇 is the mobility across the 

channel, 𝑛 is the number of charge carriers, and 𝑞 is the 

fundamental charge. RTS is known to have two primary causes, 

a change in 𝜇 brought on by the trapping/emission of a charge 

carrier in the gate oxide, and a change in 𝑛 which arises from a 

metastable Shockley-Read-Hall (SRH) generation and 

recombination (G/R) center [2],[3]. 

 
Figure 1: A prototypical bi-stable RTS-Noise Signal 
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    With regards to a CMOS image sensor, the change in 

mobility can occur in the source follower transistor, which acts 

as an amplifier for the charge induced by exposure to photons 

or dark current. As such, this flavor of RTS is called Source 

Follower RTS, or SF-RTS. If a charge becomes trapped in the 

gate oxide, the gate-source voltage 𝑉𝑔𝑠 is lowered, which 

decreases the mobility across the channel. Once the trapped 

charge is emitted, 𝑉𝑔𝑠 returns to its normal operating value and 

the signal again reads true, exempting of course other noise 

sources.  

    The physical mechanism behind the change in 𝑛 is still 

inconclusive, but is likely to occur from the turning on and off 

of SRH G/R centers in the depleted region of a photodiode or 

on the Si/SiO2 interface touching the photodiode. Reported 

activation energies around the mid-gap level (~0.56𝑒𝑉) 

supports metastable SRH G/R as the mechanism behind this 

second type of RTS [4],[5]. There is some variance in these 

measurements, so it is conceivable that a metastable bond 

rotation would change a trap state energy to be closer or further 

away from the center of the band gap, creating the conditions 

necessary to produce the observed signal. Or, perhaps a charge 

trap located on the boundary of the space charge region would 

move the depletion edge depending if it was in the capture or 

emission state. Regardless, this noise source is differentiated 

from SF-RTS by its very long state lifetimes [8], and the fact 

that the RTS amplitude is a function of integration time. Since 

the form of RTS noise changes the dark current level in a pixel 

by a discrete amount, it has been denoted as Dark Current RTS 

(DC-RTS) [9]. 

    DC-RTS has been studied for over a decade [4]-[10], and the 

current state of the art technique for characterization was 

developed by V. Goiffon et. al. in the late 2000’s [9]. This 

method convolves a step shaped filter with signals of interest to 

detect RTS and extract both the various levels and state 

lifetimes. Here, we report a study of RTS and how the 

phenomenon depends on radiation from high energy photons 

including evidence for 2𝑛𝑑 order defect generation. Rather than 

convolution, we explore if a method based on wavelet 

denoising, or shrinkage can be utilized. Wavelets are ubiquitous 

in image and signal processing [11]-[15] today, but have been 

little used in RTS studies. The following sections provide a brief 

outline of the mathematics behind wavelet denoising, and a 

detailed explanation of the wavelets denoising process that was 

used in this study. 
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II - EXPERIMENTAL INVESTIGATION OF DC-RTS 

NOISE 

 

    As stated previously, DC-RTS is a noise source characterized 

by a discrete change in the dark current of a pixel, identified by 

integration time dependence on RTS amplitude and time 

constants which are characteristically much longer than source 

follower RTS (SF-RTS). What remains elusive is the 

mechanism behind this noise source.  

    In order to study characteristics of DC-RTS amplitudes and 

time constants, five commercial-off-the-shelf Omnivision 

OV5647 CMOS image sensors were irradiated at the Oregon 

Health & Science University Radiation Medicine department. 

These sensors were used, among others, in the iPhone 4 and in 

the Raspberry Pi Camera Module v1. We used the Raspberry 

Module. They have a full well capacity of 4.3𝑘 electrons [20] 

and a 10-bit analog digital converter (ADC) giving an 𝑒−/𝐷𝑁 

conversion of approximately 4.2 electrons per digital number. 

Linearity of the device was confirmed by Belloir et. al. [21], 

and our own group. The chips were dosed, unbiased, with a 

continuum of high energy gamma and x-rays created by a linear 

electron accelerator with a tungsten target. The peak energy of 

the radiation spectrum was 2 𝑀𝑒𝑉. Ionizing radiation is a well-

documented underlying cause of RTS behavior that creates 

defects on the Si/SiO2 interface, including the shallow trench 

isolation [22]. Frames for all imagers were taken in dark 

conditions with six second integration times at a temperature of 

23℃. 
 

III - HAAR WAVELET ANALYSIS 

 

A. The Discrete Wavelet Transform 

    Central to the following RTS noise characterization is the 

discrete wavelet transform. While there are a variety of suitable 

wavelets that can be used to perform the transform, here, we 

will utilize the Haar wavelet. To understand how the discrete 

wavelet transform works with the Haar wavelet consider a one 

dimensional vector 𝐟 made of 𝑁 sampled elements, 

(f1, f2, f3, … fN) such that: 

 

         𝐟 = (f1, f2, f3, … fN)                              (1) 

 

 

    To perform the wavelet transform we take the raw signal f 

and use it to create two daughter vectors a and d, each of which 

are half the length of signal f [16]. The a series is the trend or 

average series, and its coefficients are derived from the original 

signal as a running average such that: 

 

𝑎𝑚 =
𝑓2𝑚−1+𝑓2𝑚

2
   1 < 𝑚 ≤ 𝑁/2               (2) 

   

 

    The d series is called the details vector and its coefficients 

track the changes in the original signal similar in function to a 

derivative: 

 

𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

2
  1 <  𝑚 ≤ 𝑁/2          (3) 

 

 

    Since a transform is performed, it is necessary there be an 

inverse transform as well. For the Haar wavelet transform, the 

original signal can be recovered as follows: 
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    It should be noted here that all the coefficients in both the 

trend and details series are multiplied by √2 in order to ensure 

that the total energy of the signal (the sum of the squares of the 

samples) is conserved throughout the transform. 

    A key feature of the wavelet transform is multi-resolution 

analysis (MRA). It is MRA that allows the wavelet transform to 

act like a microscope for digital signals, picking out key 

features at any scale of interest [17]. For example, if one is 

interested in features that occur on longer time scales it may be 

beneficial to perform the Haar wavelet transform several times, 

first to the original signal, then to its trend daughter signal, and 

so on. Each transform produces a trend and details series half 

the size of the signal from which they were derived, and 

therefore each coefficient in subsequent levels represents 2𝑘 

values from the raw signal, where 𝑘  is the number of levels.  

    Now, with all the pieces laid out, we can construct a series of 

Haar details operators 𝐖 and Haar trend operators 𝐕 which are 

scalar multiplied with the original signal to create the sets of 

coefficients. For the first level (highest resolution) analysis: 

 

𝐖1
1 = (

1

√2
) (1, −1, 0,0,0,0, … ) 

 

𝐖𝟐
1 = (

1

√2
) (0,0,1, −1,0,0, … ) 

 

The first level details coefficients are then generated as follows: 

 

              𝑑1 =
𝑓1−𝑓2

√2
=  𝐟 · 𝐖1

1 

 

           𝑑𝑚 =  𝐟 · 𝐖𝑚
1    

    

Note that the superscript on the operator represents the level of 

resolution. Therefore, the details operator to find the 𝑚𝑡ℎ 

element of the 𝑘𝑡ℎ level transform is represented as 𝐖𝑚
𝑘 .  

 

The trend operators are likewise constructed: 

 

       𝐕1
1 = (

1

√2
) (1, 1, 0,0,0,0, … )   

 

𝐕𝟐
1 = (

1

√2
) (0,0,1,1,0,0, … )  



 

Similar to the details coefficients: 

 

   𝑎1 =
𝑓1+𝑓2

√2
=  𝐟 · 𝐕1

1   

 

       𝑎𝑚 =  𝐟 · 𝐕𝑚
1      

B. Wavelet Denoising 
    The key step in the RTS analysis algorithm is denoising the 

original signal using the coefficients generated by the discrete 

wavelet transform (DWT). This method is particularly useful 

for detecting and characterizing RTS pixels because it 

suppresses white noise while leaving larger sudden changes 

untouched. One can think of it as a high-pass or low-pass filter 

that is dependent on change in magnitude rather than frequency. 

    As a first step the DWT is performed and the details vector 

coefficients are examined. If a particular coefficient falls below 

a specified threshold, it is set to zero. If a coefficient is larger 

than the threshold, it is either untouched (hard thresholding), or 

is subtracted by the threshold value (soft thresholding). 

    This threshold itself can be derived by a variety of 

techniques. The threshold chosen here is the VisuShrink, or 

Universal Threshold T defined as [18]: 

 

                        𝑇 = σ̂√2 log(𝑛)           (5) 

 

where 𝑛 is the number of elements in the discrete signal and �̂� 

is an estimate of the noise equal to the median of the absolute 

values in the details vector, 𝑚𝑒𝑑𝑖𝑎𝑛{𝐝} divided by 𝑢0.75 =
0.6745, the 0.75 quantile of a normal distribution [18]. 

 

    Though there are a variety of thresholds to choose from, the 

Universal Threshold is an ideal choice since it usually underfits 

the data [18], or in this case, minimizes the number of false RTS 

events. 

 
Figure 2: A typical details vector before thresholding. It contains half the 

number of elements as the signal undergoing the transform. 

 
Figure 3: A typical details vector after thresholding 

 

    Recall that the details vector of the wavelet transform is 

generated by the changes in the original signal. As seen in 

figures 2 and 3, thresholding a details vector can greatly 

simplify, or reduce the noise power in the original signal, 

making the task of analyzing only the RTS noise far more 

manageable.   

IV - SIGNAL RECONSTRUCTION 

 

    In order to analyze RTS amplitude and time constant 

distributions in radiation damaged sensors a noise free (RTS 

exempt) approximation signal is constructed based on the raw 

output from a particular pixel over several hours. The following 

process is designed to be highly discriminatory when validating 

a pixel for exhibiting RTS behavior. This is done to prevent 

false positive RTS detection from characteristics like high white 

noise, pink noise, or single events like cosmic ray impacts from 

polluting the statistics pool. 

 

A. Window Comparison 

 
Figure 4: Stage 1, the raw signal 𝐟 is split into windows of size 250 frames. The 

mean values of a window is compared to the mean of the previous two windows. 

 

    The first step in the construction process is simply to break 

up the raw pixel signal into sections and compare the mean 

values of adjoined sections and their neighbor. This crude but 

effective RTS-Noise detector uses the standard deviation, 𝜎𝑟 of 

a signal as the metric for RTS candidacy. If the mean value of a 

particular section is greater or less than the mean value of the 

previous section by at least 𝜎𝑟 the pixel is passed along for 

analysis. We have chosen here to use six windows representing 

250 frames. This first simple step is important to the process not 



only because it does very well picking out RTS pixel 

candidates, but also because it saves precious run time by 

ensuring the computational heavy lifting is only performed on 

signals of interest. If a pixel fails the window comparison, the 

program simply moves on to the next. 

B. DWT Denoising 

    A pixel that passes the window comparison test is then run 

through the DWT denoising process described above. The 

following analysis utilized a 7-level denoising routine. 

 

Figure 5: Stage 2, the signal f is run through the DWT denoising process, 

detailed above, and returned as the denoised signal 𝐟′. Though the white noise 

is severly depressed, transient spikes remain. 

C. Temporal Screen 

    The denoising process cleans the signal, however issues 

remain. First, the magnitude of the RTS transition amplitudes 

in the approximation often fall short of their true value, leaving 

a systematic error in our reporting. Second, very brief 

transitions appear in this denoised version, these are ringing 

artifacts. Since these features often fall outside of the Nyquist 

limit, they must be disregarded as transients in the 

characterization. In order to screen these brief transitions from 

the approximation signal temporal thresholding phase is 

employed in the program. This is accomplished by simple 

comparison and is possible because of the nature of the DWT 

denoising process. As seen in Figure 5, DWT denoising can 

leave long runs of sequential frames with exactly the same 

value. This means that in order to verify that a particular 

transition is not transient, all that is needed is to compare frame 

𝑘 with frame  𝑘 − 1.  If there is some difference in their values 

it is understood that a transition has taken place. Then, we 

compare the value of frame 𝑘 with the value of the next 𝑙 frames 

where 𝑙 is the width of our temporal screen. If in fact the value 

of 𝑘 is the same as the next 𝑙 frames, the value is kept. If it fails 

this condition the value of frame 𝑛 is set to the value of frame 

𝑘 − 1. The width of this screen can vary and can be subject to 

debate. On the one hand, the goal should be to construct a signal 

that is as closely correlated to the original as possible. On the 

other, many RTS signals display amplitudes that barely exceed 

the white noise, which can cast doubt on their very existence. 

In order to further increase the confidence of a transition we 

have chosen to set 𝑙 equal to 10. 

 

 

Figure 6: Stage 3, the denoised signal 𝐟′ is passed through the temporal screen 

and returned as the denoised and screened signal 𝐟′′  Transient spikes have been 

removed. 

D. A Second Thresholding 

    At this point the signal shows almost no remnant of the white 

noise. With the transients removed and the majority of the 

heavy lifting taken care of by the DWT denoising, all that 

remains is to again threshold the changes in the screened signal. 

Recognizing that most of the changes, sample to sample, are 

zero, and only the largest changes are RTS transitions, the goal 

is to remove the smaller variations left over from the DWT 

denoising process. This time, rather than the dyadic DWT, we 

simply create a new series of size 𝑁 − 1 by subtracting each 

value from the preceding one starting with element two. Here 

𝑁 is, again the number of elements in the signal and 𝐟′ is the 

members of the screened signal. 𝐬 is used in place of 𝐝 to 

emphasize the non-dyadic quality of this last details vector. 

                                 𝐬 = (s1, s2, s3, … fN−1)           (6) 

 

                                       𝑠𝑚 = 𝑓𝑚
′ − 𝑓𝑚−1

′                          (7) 

 

Figure 7: Stage 4, a typical details vector before and after denoising. All but a 
few of the elements are set to zero. 



    Again, the threshold is applied to this series just as before, 

but now the threshold is chosen differently. Since there are now 

so few large changes representing RTS transitions, and some 

smaller ones left over from the DWT process, we set the 

threshold 𝑇𝑠 = 𝑠𝑀𝐴𝑋 ∗ 𝑢0.75 [9]. All elements smaller than the 

threshold are again set to zero, while those larger are untouched. 

 

E. Final Reconstruction 

 
 
Figure 8: Stage 5, The final approximation is constructed. From here RTS 
transition amplitudes and time constants can be collected for statistical analysis. 

 

    For the final reconstruction, the locations of the remaining 

non-zero elements are taken from the second threshold series, 𝐬 

and the mean values of the original signal between those 

locations are used to fill in the approximation. By using the 

mean value of the raw signal between transitions, it is ensured 

that the final amplitudes are very close to the actual values. 

From this form it is simple to collect time constants and 

transition amplitudes from tens of thousands of RTS pixels and 

study them from a statistical perspective. 

V-RESULTS 

 

    The semilogarithmic plot of the distribution of maximum 

RTS transition amplitudes in Figure 9 reveals that, as expected, 

a larger dose leads to more RTS pixels. The amplitudes 

observed in this analysis can reach large magnitudes, up to 

350𝑒−/s, though magnitudes of over 10000𝑒−/s have been 

reported [22]. It is notable that the slopes of the curves share a 

similar shape in all of the semi-log histogram curves, indicating 

that a higher dose increases the probability of creating a 

metastability, but the amplitude probability is set.  

 

Figure 9: The distribution of RTS transition maximum amplitudes 

    Similar to the maximum amplitude plot, the state lifetime 

histograms of Figures 10 & 11 display an exponential 

distribution, though far more flat, here with a peak at 

approximately 250 frames, or around 85 minutes. It is likely 

that the shortest transition times are artificially suppressed by 

choosing to denoise the signals down several levels. A signal 

that is denoised four levels would yield a high-resolution 

analysis at the cost of approximation accuracy from false 

positives. A curiosity from the plots is the apparent flattening of 

the distribution peak seen in the 'low state' time constants, i.e., 

the lower of the two level dark current signal levels. This may 

indicate that the physical configurations that produce the 'low 

state' for DC-RTS pixels are, on average, more stable than the 

'high state' configuration.  

 

 

 
Figure 10: The distribution of 'high' state time constants 

 

 
 
Figure 11: The distribution of 'low' state time constants 



 
Figure 12: The number of RTS pixels as a function of absorbed radiation dose 
(Rad(Si)) 

  

    The number of RTS pixels does not follow a linear 

correlation with radiation dose, but rather increases almost 

quadratic with the dose. This result indicates that the process 

creating RTS centers by 𝛾-radiation is of second-order. There is 

some precedent for this type of defect generation mechanism. It 

has been reported that very high doses of 𝛾-radiation is 

responsible for the formation of defect centers known as 

𝐻 (97𝐾) and 𝐼0/− (200 𝐾), designated as such by their peaks 

on a thermally stimulated current (TSC) spectrum. The 𝐼 center 

band energy has been measured at 0.5𝑒𝑉 ± 0.05𝑒𝑉 below the 

conduction band, very close to the RTS defect energies reported 

in [4],[5]. There is some discussion as to whether or not 𝐻 is 

simply the donor state of 𝐼, making them the same defect. 

Regardless, both states grow in population at a nearly quadratic 

rate with dose and share nearly the same slope on a log-log plot, 

as the data reported in Figure 12 [23]. While far from conclusive 

in identifying the defect responsible for DC-RTS on the 

interface of pixels, 2𝑛𝑑 order generation narrows down the field 

of candidates and provides a potential path toward that 

identification. For example, the double vacancy oxygen (𝑉2𝑂) 

complex which can be formed when a 𝛾-ray strikes a vacancy 

oxygen defect, i.e., 𝑉 + 𝑂 → 𝑉𝑂, then 𝑉𝑂 + 𝑉 → 𝑉2𝑂 is such 

a candidate. 

VI – CONCLUSION 

 

    We report the results of a study into DC-RTS noise in 

commercial image sensors irradiated with high energy photons. 

The study utilized a wavelet denoising method that suppresses 

Gaussian noise while preserving RTS level transitions. That 

method was explained in detail. We found that while increased 

dose increases the chances of creating an RTS center, the 

amplitude probability distribution is independent of dose. 

Finally, we report that the number of RTS pixels does not 

increase linearly with dose, but instead the dependence is nearly 

quadratic. This indicates that the defect responsible for DC-RTS 

from high energy photons arises from a second order generation 

mechanism, which provides guidance for further studies in this 

area.  
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